3.4.44 \(\int \frac {(a B+b B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\) [344]

Optimal. Leaf size=179 \[ -\frac {2 b B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}}+\frac {2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \]

[Out]

2*b^2*B*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)-2*b*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*
EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/a/(a^2-b^2)/d/((a+b*cos(d*x+c))/(
a+b))^(1/2)+2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+
b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/a/d/(a+b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.27, antiderivative size = 179, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {21, 2881, 3138, 2734, 2732, 12, 2886, 2884} \begin {gather*} \frac {2 b^2 B \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}-\frac {2 b B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a d \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a*B + b*B*Cos[c + d*x])*Sec[c + d*x])/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(-2*b*B*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(a*(a^2 - b^2)*d*Sqrt[(a + b*Cos[c + d
*x])/(a + b)]) + (2*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(a*d*Sqrt[
a + b*Cos[c + d*x]]) + (2*b^2*B*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2881

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2
- b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])
^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m +
n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {(a B+b B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx &=B \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\\ &=\frac {2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {(2 B) \int \frac {\left (\frac {1}{2} \left (a^2-b^2\right )-\frac {1}{2} a b \cos (c+d x)-\frac {1}{2} b^2 \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {(2 B) \int -\frac {b \left (a^2-b^2\right ) \sec (c+d x)}{2 \sqrt {a+b \cos (c+d x)}} \, dx}{a b \left (a^2-b^2\right )}-\frac {(b B) \int \sqrt {a+b \cos (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {B \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a}-\frac {\left (b B \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\\ &=-\frac {2 b B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {\left (B \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{a \sqrt {a+b \cos (c+d x)}}\\ &=-\frac {2 b B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}}+\frac {2 b^2 B \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 5.56, size = 403, normalized size = 2.25 \begin {gather*} \frac {B \left (-\frac {-\frac {4 a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 \left (2 a^2-3 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}-\frac {2 i \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a F\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \Pi \left (\frac {a+b}{a};i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )\right )\right )}{a \sqrt {-\frac {1}{a+b}}}}{(-a+b) (a+b)}+\frac {4 b^2 \sin (c+d x)}{\left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\right )}{2 a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a*B + b*B*Cos[c + d*x])*Sec[c + d*x])/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(B*(-(((-4*a*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*
x]] + (2*(2*a^2 - 3*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a
+ b*Cos[c + d*x]] - ((2*I)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*Csc[
c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b
*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*EllipticPi[(a +
 b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*Sqrt[-(a + b)^(-1)]))/(
(-a + b)*(a + b))) + (4*b^2*Sin[c + d*x])/((a^2 - b^2)*Sqrt[a + b*Cos[c + d*x]])))/(2*a*d)

________________________________________________________________________________________

Maple [A]
time = 0.38, size = 377, normalized size = 2.11

method result size
default \(\frac {2 B \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}+\sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a b -\sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b^{2}+\sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}-\sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right ) b^{2}\right )}{a \left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b}\, d}\) \(377\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2*B*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^2+(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b-(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a
+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2+(-2*b/(a-b)
*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a
-b))^(1/2))*a^2-(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(co
s(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*b^2)/a/(a-b)/(a+b)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(
1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)*sec(d*x + c)/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)*sec(d*x + c)/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {B\,a+B\,b\,\cos \left (c+d\,x\right )}{\cos \left (c+d\,x\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)*(a + b*cos(c + d*x))^(5/2)),x)

[Out]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)*(a + b*cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________